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Abstract 

The availability of high-performance computing tools gives the opportunity of 
solving mathematical representations of complex systems made through 
Ordinary Differential Equations (ODEs). This paper illustrates some parallel 
algorithms suitable for the solution of ODEs, inside an abstract simulator 
architecture aimed to the modeling of dynamical systems. 

1. Introduction 

1.1. Topics 

The explosion of computing technology today allows to face with the 
increasing complexity of the problems to be solved, typically through 
modeling, for its ability to simplify problems by eliminating unnecessary 
details. Computers can now deal with otherwise unsolvable problems, 
thanks to modeling software that allows the discover of meanings hidden 
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by the vast amount of data to be collected during the observation of a 
system. 

Systems are frequently modeled by ordinary differential equations 
(ODEs) [7], which have been used in different ways to describe a wide 
range of real world systems. This work is focused on the solution of such 
models, i.e., on the computational solution of ODEs, in particular through 
parallel algorithms. The computing tool may so be useful in two ways: 
firstly, it can provide the means for resolving analytically intractable 
equations; secondly, it can provide a sufficient computing power to use 
otherwise unworkable techniques. 

1.2. Distributed systems 

Probably the most important ongoing development in computer 
architecture is the distributed computing. Distributed computing systems 
are the only architecture that has the potential to meet simultaneously 
all major desirable needs for a computer system, i.e., 

● high performance through parallel processing (using low cost LSI 
components); 

● modular expandability of the system; 

● system fault tolerance; 

● increased economy by software simplification. 

A distributed system is a computing system made of several 
processing nodes which satisfies the following conditions: 

● the general system functions are provided through the cooperation 
of various processes; 

● there are no two processes having the same vision of the global 
state of the system; 

● there is no single system process that can ensure that the other 
processes have a consistent and identical “understanding” of the overall 
state of the system. 

From this definition, it is clear that it is above all the control of the 
system to be distributed throughout the system itself. In addition, system 
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processing nodes can be distributed spatially or geographically in a 
building, in a complex of buildings, in a region, nation or even in different 
continents. Such distribution implies that such “loosely” coupled nodes 
can only communicate through message exchange. It must be said that 
there is also a great interest in the multicore and multiprocessor systems, 
in which processors (and cores) are not dispersed but are concentrated 
locally, where control is nevertheless distributed (decentralized). 

Many of the principles and techniques developed for the organization 
of distributed systems can be used profitably for the organization of 
localized systems; distributed systems, moreover, once reached a certain 
maturity, may become the preferred architectural solution for a wide 
range of computing applications. 

2. Hierarchies of Systems and Models 

A system is a set of subsystems interacting with each other: this 
definition is universally accepted, and stresses the possibility of usefully 
breaking a system into its components. 

These subsystems typically behave in a parallel manner. All system 
variables are a function of time, and are constantly exchanged between 
the subsystems in parallel; it is therefore necessary for a data processing 
system (to be a “true” simulator) to approximate these important features 
typical of the nature of parallelism. We shall now see the “hierarchical” 
nature of systems and models, both from a space and time point of view. 

2.1. Spatial hierarchies 

A system belongs to a certain region of space. For the temporal 
behavior of a system, the spatial dependence is not embedded in usual 
definitions, but for systems broken into subsystems operating 
simultaneously or in parallel there is some ordering of these subsystems 
into space. Parallel systems operate in a spatial structure; the direct or 
indirect interaction between subsystems is expressed by the 
interconnection matrix (see Figure 1). 

Through subsequent breakdowns a system (named the top system) is 
ordered in a hierarchy of intermediate and/or bottom systems in space. A 
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breakdown rule for which a system (and each subsystem) is split into k 
subsystems gives a recursive spatial hierarchy of order k, complete if for 
each level all the subsystems are broken. 

 

Figure 1. Interconnection matrix C for a system with m subsystems, 
where (a) all subsystems are mutually interconnected, and (b) only 
neighbor subsystems are interconnected. 

2.2. Time hierarchies 

The input-output relationship of a system can be constant or variable 
over time, and this dependency can occur in several ways: or the 
structure of an interconnected system remains constant but the intensity 
of existing interactions changes over time, or the interconnection 
structure varies over time. In the latter case, at a certain time only one of 
the potential subsystems may be an effective subsystem, but over time 
many of the potential subsystems can become effective. Of course, there 
are causal “decision” rules to make the transition from the actual 
subsystem to his successor at the right time. 
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3. Simulators and Related Principles 

A necessary condition for the simulation of a system is the one-to-one 
correspondence in space and time between the system and its simulation 
(model). This determines the architecture of a parallel processor, in order 
to implement as much as possible adherently the spatial and temporal 
hierarchies present in the model of the system, but very often it is 
impossible to implement a model on a system developed in such a way as 
to preserve the structure of the model in space and time. 

A conventional digital computer can handle a spatial hierarchy 
transforming it into a time-ordered hierarchy, having reshaped the 
spatial hierarchy in a hierarchy with dimension of Level 1. This leads to 
the fact that even small changes in the description of the system may 
require a significant computational modeling overhead. 

In the next section are discussed some important aspects of a parallel 
processor useful to solve differential equations, leaving out the details of 
hardware/software (for a more complete overview see [2, 3, 5, 8]). 

4. Architecture of the Proposed Parallel Processor 

Because of the need for a modular architecture with great regularity 
for the hardware and software, only recursive spatial hierarchies of data 
processing modules can be considered relevant for a parallel data 
processor. 

When the subsequent breakdown turns into models of lower systems 
under several levels of decomposition, transformation into a fully 
recursive spatial hierarchy will result in a high percentage of models of 
unused subsystems, as well as an increase in the percentage of dummy 
elements, both introduced to meet regularity in breaking rules. 

Similarly, because of demand for modular architecture, the time-
ordered hierarchy to be incorporated into a parallel data processor must 
be recursive. The transformation in a recursive time-ordered hierarchy is 
only possible if a time-ordered hierarchy of a system model has a 
maximum number of possible successors less than or equal to the number 
of possible transitions in the recursive time-ordered hierarchy. 
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In this respect, it seems acceptable to restrict the class of time-
ordered hierarchies implemented in a transparent manner by limiting 
the number of different definitions of system model as well as the 
number of possible successors for each transition level. 

As for the implementability of spatial hierarchies, it is necessary to 
analyze the time-ordered hierarchies of models of practical systems in 
order to design the implementability in greater detail. 

4.1. Interconnections 
As already mentioned, for large systems and models the 

interconnection matrix is sparse, so the reduction of interconnectability is 
permissible in the spatial hierarchy of the data processor. 
Interconnectability reduction is considered in Figure 2 in the case of a 
parallel data processor with a spatial ternary truncated hierarchy. 

There are systems that show a structure of interaction that does not 
allow the reduction of interconnectability in its spatial hierarchy, if it is 
necessary to preserve the one-to-one analogy in space. The simulation of 
these systems by the only spatial extent will not be possible. Simulator's 
advanced sequential processing power must be used by allowing the 
efficient extension in time and applying parallel overlays, for example, in 
iterative blocks. 

 

Figure 2. Spatial interconnection structure of a parallel data 
processor (where interaction kernel is an algorithm for ( )kk vgz =  

and data processor b. m. is an algorithm for 
gzz kk α+=+1 ( )).,,,, rkkkk zzuv −…   



PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 135

4.2. Parallel algorithms 

The design of a data parallel processor may be based primarily on the 
methodology in terms of algorithms and methods of data processing, 
where parallel data processing is relative to the parallel management of 
continuously conflicting tasks. 

In each form of data processing at all levels in Figure 2 a certain 
application has to be implemented using compound algorithms designed 
through the principle of extension in space and time and taken from the 
basic algorithms operating in discrete-time set pS  (with processing cycle 

time pθ ). A basic algorithm is pre-programmed in a spatial configuration 

of arithmetic components operating in parallel in time across the time-
discrete set pS  (with basic cycle time pb θ<<θ ) and is then named 

parallel algorithm. 

Consider an example of the use of a parallel algorithm in sequential 
advanced data processing: a multi-point compound algorithm for a set of 
n homogeneous differential equations of the first order 

( ( ))
( ( )) ( ) ,;, 0010 yuyuuuuygdu

uyd
=<<=  (1) 

where multi-point means that a point algorithm (application in a point of 
the space of arguments) must be run for a sequence of values of the input 
variable. The applications of parallel intervals continuously interacting 
(such as those representing the n time-continuous models of first order in 
(1)) and these algorithms are said to be applications of true parallel 
intervals and true parallel algorithms. 

The recursive interval application (1) is achieved by a multipoint 
algorithm ( ) …,2,1,1 == − kyGy kk  with .1 θ=− −kk uu  This “c” 

algorithm is of compound type, and is made of n algorithms 
.,,1, njc j …=  The jc  parallel algorithms are made of arithmetic 

components of type “delay”, with delay ,bθ  implying that the parallel 
algorithm jc  is a delay algorithm with delay ., bjj θ>>θθ  Delay 

algorithms are algorithms that evaluate a certain function with a delay 
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between the input and output that depends on the complexity of the 
function; therefore the value of jθ  depends on the function .jg  

Even algorithm “c” becomes a delay algorithm, with delay >>θθ, ;bθ  

so, it is not a true parallel algorithm in ,bS  but a true parallel algorithm 
in { }., kaa uSS =  The values of θ  and ( )njj ,,1 …=θ  satisfy the 

inequality: 

.max jj
u θ≥  (2) 

The implementation of the interval application (1) in this way, as a 
parallel delay algorithm is very fruitful only in the case of a balanced 
complexity: in the best case, the spatial extension of the delay algorithm 
“a” in n parallel delay algorithms jc  gives an increase in processing 

speed by a factor n. In the worst case, the improvement is almost 
imperceptible: then, the implementation of (1) as a sequential delay 
algorithm is a good alternative.  

A better accuracy is achieved when, instead of parallel delay 
algorithms are adopted true parallel algorithms in discrete time, allowing 
the exchange of data “useful” for accuracy in all discrete moments of basic 
time set .bS  

Consider the design in greater detail of true parallel algorithms. An 
application ( )vgz =  that cannot be computed at once, can be 
approximated by ( ).1 kk vgz =+  The value of the function at time ku  can 

be approximated by an application ,∗g  a function of a finite number of 
previous argument values: 

( ),,,, 121 −−−−
∗≈ Lkkkk vvvgz …  

where: 

● the previous argument values have a decreasing influence on the 
value of function when time increases; 

● for a constant argument, ∗g  will be equal to g. 
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Suppose now that the application ∗g  can be split into simple 
applications ig  (generable within a time bθ ) that can be hierarchically 
nested: 

( ( ( ( ) ) ,1,,,,,, 1322110 +≥∈= −−−−− LkSuvgvgvgvgz bkLkLkkkk …… (3) 

where Ljg j ,,0, …=  represents the application of the algorithm as 

implemented in block j, and where 0u  is the initial time. If time indexes 
in equation (3) are all equal to ,1−− Lk  we have the classic “sequential 
pipeline”. If indexes are different, we get a “hybrid1 pipeline”. The output 
of a hybrid pipeline has a delay only equal to .bθ  The initial value of a 

hybrid pipeline algorithm is a matrix Ln ×  for .nv R∈  

The generation of trigonometric functions, for example, can be 
performed using 

● a sequential pipeline algorithm: 

( ) =+5sin kv  
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● a hybrid pipeline algorithm: 

( ) =+1sin kv  
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In this case, all pipeline segments, except the last, must perform similar 
arithmetic operations. In [1], several examples are discussed of hybrid 
pipeline algorithms. Note that in some cases, the pipeline may become 
too long: in such cases, we must take a combination of methods of table 
consulting and hybrid pipeline arithmetic [2]. 

                                                      

1 The term hybrid is due to the fact that blocks do not only operate sequentially in 
space but in parallel too, with respect to the input variable. 
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The design of a compound algorithm often includes one or more 
closed loops. Some stability studies [4, 6] show that in a parallel data 
processor compound algorithms should be implemented in different time 
sets …,2,1, =jSpj  when true parallel algorithms are used. So some 

input and output buffers are needed in arithmetic components in order to 
transform these different time sets into the data transfer time set dS  

( ).minwith pjd θ≤θ  

True parallel algorithms' stability conditions do not only depend on 
the mathematical properties of the topology of the spatial structure of 
their arithmetic components operating in parallel, but also on the 
stability intervals of such components. In a such way, the stability 
interval of the linear open-loop hybrid pipeline can be evaluated: 

,1with
1

2211 =αα++α+α= ∑
=

−−−

m

j
jmkmkkk vvvz "  

making use of the transform analysis, and the results for the particular 

case mj
1=α  for mj ,,1 …=  in <−m  feedback gain .1<  

If you use the internal feedback from the output of a hybrid pipeline 
to the inputs of all blocks, you obtain a closed-loop hybrid pipeline 
algorithm, described by: 

( ( ( ,,,,,, 332221110 −−−−−−= kkkkkkk zvgzvgzvgz  

( ) ).,, 11 …… −−−− LkLkL zvg  (4) 

A particular case of the linearized version ∑ =
=

m
jkz 1  

( ),jkjjkj vz −− α+β  the true parallel algorithm (named single step 

algorithm) += −1kk zz  ( )11 −− −
θ
θ

kk
b zv  shows a stability interval 

<+
θ
θ− 12
b

 feedback gain .1<  Thus a large stability interval requires 

.bθ>>θ  
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Note that the single step algorithm is a discrete version of the 

unconditionally stable time-continuous algorithm ( ) ( ) ( ).uvuzdu
udz =+θ  

For ( )uv  constant both algorithms have the same equilibrium state. 

A final consideration concerns the integration of ODEs. There are 
several ways to perform the numerical integration of: 

( )
( ( ) ( )) [ ) ( ) ,;,,, 000 yuyuuuuvuygdu

uyd
e =∈=  

but almost all are unsuitable for parallel data processing. The application 
of methods with local truncation errors of order higher than 

( )2::O ku∆  is unnecessary [4]. When the integration is achieved 

through discrete-time integration algorithms continuous in ,bS  the Euler 

method (first order) is attractive. An important objection to this method 
is that the magnitude of the step must be pretty low, which increases the 
accumulation of rounding errors. 

From Euler's numerical integration method ( ,11 −−
∆+= kkkk yguyy  

)1−kv  an attractive parallel algorithm can be derived. With the smallest 

ku∆  equal to :bθ  

,11 −−
θ+= kbkk wyy  

( )., 11 −−
= kkk vygw  (5) 

As arithmetic components of the parallel algorithm, we need a “linear 
combination” delay algorithm of size two and a “function generating” 
algorithm. The function is typically too complex to be implemented in ;bθ  

quasi-time-continuous table consulting algorithms need to be applied [2]. 
The data transfer between arithmetic components requires that all data 
are transferred in the same word length; then, it is necessary to round off 
each output variable before the transfer. On the other hand, in true 
parallel data processing, due to the reduced time step ,bθ  we must take 
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account of the term 1−θ kbw  in such a way that the cumulative result is in 

agreement with the required accuracy; so in the next processing cycle, a 
rounding correction has to be introduced. With 

,,, krklk yyy +=  (6) 

where kly ,  is the rounding value of ky  and kry ,  is the local rounding 

error, the rounding correction applied to (5) results in: 

,11,1 −−−
θ++= kbkrkk wyyy  (7) 

( )., 11, −−
= kklk vygw   

In a parallel data processor, all arithmetic components must be 
equipped internally with such rounding procedure. 

5. Conclusions 

In this work, we analyze a possible parallel computing architecture 
for the solution of ordinary differential equations, both in localized and 
distributed environments, aiming to develop concepts for the construction 
of a top layer of software for modeling and simulation (in its restricted 
meaning of model execution). 

We also present some experimental results with the aim of providing 
the modeling process with better computing approaches. A series of 
research hints are given, to further guide future research. 
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