
Journal of Pure and Applied Mathematics: Advances and Applications
Volume 1, Number 2, 2009, Pages 129-141

2000 Mathematics Subject Classification: 93A30, 37-02, 34A34.
 Keywords and phrases: modeling, dynamical systems, ordinary differential equation,

algorithm.

Received January 4, 2009

 2009 Scientific Advances Publishers

PARALLEL ALGORITHMS FOR SOLVING ORDINARY
DIFFERENTIAL EQUATIONS

CRESCENZIO GALLO

Dipartimento Di Scienze Economiche
Matematiche E Statistiche Centro Di Ricerca
Interdipartimentale Bioagromed
Università di Foggia-Largo Papa
Giovanni Paolo II n.1, 71100 Foggia
Italy
e-mail: c.gallo@unifg.it

Abstract

The availability of high-performance computing tools gives the opportunity of
solving mathematical representations of complex systems made through
Ordinary Differential Equations (ODEs). This paper illustrates some parallel
algorithms suitable for the solution of ODEs, inside an abstract simulator
architecture aimed to the modeling of dynamical systems.

1. Introduction

1.1. Topics

The explosion of computing technology today allows to face with the
increasing complexity of the problems to be solved, typically through
modeling, for its ability to simplify problems by eliminating unnecessary
details. Computers can now deal with otherwise unsolvable problems,
thanks to modeling software that allows the discover of meanings hidden

CRESCENZIO GALLO 130

by the vast amount of data to be collected during the observation of a
system.

Systems are frequently modeled by ordinary differential equations
(ODEs) [7], which have been used in different ways to describe a wide
range of real world systems. This work is focused on the solution of such
models, i.e., on the computational solution of ODEs, in particular through
parallel algorithms. The computing tool may so be useful in two ways:
firstly, it can provide the means for resolving analytically intractable
equations; secondly, it can provide a sufficient computing power to use
otherwise unworkable techniques.

1.2. Distributed systems

Probably the most important ongoing development in computer
architecture is the distributed computing. Distributed computing systems
are the only architecture that has the potential to meet simultaneously
all major desirable needs for a computer system, i.e.,

● high performance through parallel processing (using low cost LSI
components);

● modular expandability of the system;

● system fault tolerance;

● increased economy by software simplification.

A distributed system is a computing system made of several
processing nodes which satisfies the following conditions:

● the general system functions are provided through the cooperation
of various processes;

● there are no two processes having the same vision of the global
state of the system;

● there is no single system process that can ensure that the other
processes have a consistent and identical “understanding” of the overall
state of the system.

From this definition, it is clear that it is above all the control of the
system to be distributed throughout the system itself. In addition, system

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 131

processing nodes can be distributed spatially or geographically in a
building, in a complex of buildings, in a region, nation or even in different
continents. Such distribution implies that such “loosely” coupled nodes
can only communicate through message exchange. It must be said that
there is also a great interest in the multicore and multiprocessor systems,
in which processors (and cores) are not dispersed but are concentrated
locally, where control is nevertheless distributed (decentralized).

Many of the principles and techniques developed for the organization
of distributed systems can be used profitably for the organization of
localized systems; distributed systems, moreover, once reached a certain
maturity, may become the preferred architectural solution for a wide
range of computing applications.

2. Hierarchies of Systems and Models

A system is a set of subsystems interacting with each other: this
definition is universally accepted, and stresses the possibility of usefully
breaking a system into its components.

These subsystems typically behave in a parallel manner. All system
variables are a function of time, and are constantly exchanged between
the subsystems in parallel; it is therefore necessary for a data processing
system (to be a “true” simulator) to approximate these important features
typical of the nature of parallelism. We shall now see the “hierarchical”
nature of systems and models, both from a space and time point of view.

2.1. Spatial hierarchies

A system belongs to a certain region of space. For the temporal
behavior of a system, the spatial dependence is not embedded in usual
definitions, but for systems broken into subsystems operating
simultaneously or in parallel there is some ordering of these subsystems
into space. Parallel systems operate in a spatial structure; the direct or
indirect interaction between subsystems is expressed by the
interconnection matrix (see Figure 1).

Through subsequent breakdowns a system (named the top system) is
ordered in a hierarchy of intermediate and/or bottom systems in space. A

CRESCENZIO GALLO 132

breakdown rule for which a system (and each subsystem) is split into k
subsystems gives a recursive spatial hierarchy of order k, complete if for
each level all the subsystems are broken.

Figure 1. Interconnection matrix C for a system with m subsystems,
where (a) all subsystems are mutually interconnected, and (b) only
neighbor subsystems are interconnected.

2.2. Time hierarchies

The input-output relationship of a system can be constant or variable
over time, and this dependency can occur in several ways: or the
structure of an interconnected system remains constant but the intensity
of existing interactions changes over time, or the interconnection
structure varies over time. In the latter case, at a certain time only one of
the potential subsystems may be an effective subsystem, but over time
many of the potential subsystems can become effective. Of course, there
are causal “decision” rules to make the transition from the actual
subsystem to his successor at the right time.

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 133

3. Simulators and Related Principles

A necessary condition for the simulation of a system is the one-to-one
correspondence in space and time between the system and its simulation
(model). This determines the architecture of a parallel processor, in order
to implement as much as possible adherently the spatial and temporal
hierarchies present in the model of the system, but very often it is
impossible to implement a model on a system developed in such a way as
to preserve the structure of the model in space and time.

A conventional digital computer can handle a spatial hierarchy
transforming it into a time-ordered hierarchy, having reshaped the
spatial hierarchy in a hierarchy with dimension of Level 1. This leads to
the fact that even small changes in the description of the system may
require a significant computational modeling overhead.

In the next section are discussed some important aspects of a parallel
processor useful to solve differential equations, leaving out the details of
hardware/software (for a more complete overview see [2, 3, 5, 8]).

4. Architecture of the Proposed Parallel Processor

Because of the need for a modular architecture with great regularity
for the hardware and software, only recursive spatial hierarchies of data
processing modules can be considered relevant for a parallel data
processor.

When the subsequent breakdown turns into models of lower systems
under several levels of decomposition, transformation into a fully
recursive spatial hierarchy will result in a high percentage of models of
unused subsystems, as well as an increase in the percentage of dummy
elements, both introduced to meet regularity in breaking rules.

Similarly, because of demand for modular architecture, the time-
ordered hierarchy to be incorporated into a parallel data processor must
be recursive. The transformation in a recursive time-ordered hierarchy is
only possible if a time-ordered hierarchy of a system model has a
maximum number of possible successors less than or equal to the number
of possible transitions in the recursive time-ordered hierarchy.

CRESCENZIO GALLO 134

In this respect, it seems acceptable to restrict the class of time-
ordered hierarchies implemented in a transparent manner by limiting
the number of different definitions of system model as well as the
number of possible successors for each transition level.

As for the implementability of spatial hierarchies, it is necessary to
analyze the time-ordered hierarchies of models of practical systems in
order to design the implementability in greater detail.

4.1. Interconnections
As already mentioned, for large systems and models the

interconnection matrix is sparse, so the reduction of interconnectability is
permissible in the spatial hierarchy of the data processor.
Interconnectability reduction is considered in Figure 2 in the case of a
parallel data processor with a spatial ternary truncated hierarchy.

There are systems that show a structure of interaction that does not
allow the reduction of interconnectability in its spatial hierarchy, if it is
necessary to preserve the one-to-one analogy in space. The simulation of
these systems by the only spatial extent will not be possible. Simulator's
advanced sequential processing power must be used by allowing the
efficient extension in time and applying parallel overlays, for example, in
iterative blocks.

Figure 2. Spatial interconnection structure of a parallel data
processor (where interaction kernel is an algorithm for ()kk vgz =

and data processor b. m. is an algorithm for
gzz kk α+=+1 ()).,,,, rkkkk zzuv −…

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 135

4.2. Parallel algorithms

The design of a data parallel processor may be based primarily on the
methodology in terms of algorithms and methods of data processing,
where parallel data processing is relative to the parallel management of
continuously conflicting tasks.

In each form of data processing at all levels in Figure 2 a certain
application has to be implemented using compound algorithms designed
through the principle of extension in space and time and taken from the
basic algorithms operating in discrete-time set pS (with processing cycle

time pθ). A basic algorithm is pre-programmed in a spatial configuration

of arithmetic components operating in parallel in time across the time-
discrete set pS (with basic cycle time pb θ<<θ) and is then named

parallel algorithm.

Consider an example of the use of a parallel algorithm in sequential
advanced data processing: a multi-point compound algorithm for a set of
n homogeneous differential equations of the first order

(())
(()) () ,;, 0010 yuyuuuuygdu

uyd
=<<= (1)

where multi-point means that a point algorithm (application in a point of
the space of arguments) must be run for a sequence of values of the input
variable. The applications of parallel intervals continuously interacting
(such as those representing the n time-continuous models of first order in
(1)) and these algorithms are said to be applications of true parallel
intervals and true parallel algorithms.

The recursive interval application (1) is achieved by a multipoint
algorithm () …,2,1,1 == − kyGy kk with .1 θ=− −kk uu This “c”

algorithm is of compound type, and is made of n algorithms
.,,1, njc j …= The jc parallel algorithms are made of arithmetic

components of type “delay”, with delay ,bθ implying that the parallel
algorithm jc is a delay algorithm with delay ., bjj θ>>θθ Delay

algorithms are algorithms that evaluate a certain function with a delay

CRESCENZIO GALLO 136

between the input and output that depends on the complexity of the
function; therefore the value of jθ depends on the function .jg

Even algorithm “c” becomes a delay algorithm, with delay >>θθ, ;bθ

so, it is not a true parallel algorithm in ,bS but a true parallel algorithm
in { }., kaa uSS = The values of θ and ()njj ,,1 …=θ satisfy the

inequality:

.max jj
u θ≥ (2)

The implementation of the interval application (1) in this way, as a
parallel delay algorithm is very fruitful only in the case of a balanced
complexity: in the best case, the spatial extension of the delay algorithm
“a” in n parallel delay algorithms jc gives an increase in processing

speed by a factor n. In the worst case, the improvement is almost
imperceptible: then, the implementation of (1) as a sequential delay
algorithm is a good alternative.

A better accuracy is achieved when, instead of parallel delay
algorithms are adopted true parallel algorithms in discrete time, allowing
the exchange of data “useful” for accuracy in all discrete moments of basic
time set .bS

Consider the design in greater detail of true parallel algorithms. An
application ()vgz = that cannot be computed at once, can be
approximated by ().1 kk vgz =+ The value of the function at time ku can

be approximated by an application ,∗g a function of a finite number of
previous argument values:

(),,,, 121 −−−−
∗≈ Lkkkk vvvgz …

where:

● the previous argument values have a decreasing influence on the
value of function when time increases;

● for a constant argument, ∗g will be equal to g.

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 137

Suppose now that the application ∗g can be split into simple
applications ig (generable within a time bθ) that can be hierarchically
nested:

(((()) ,1,,,,,, 1322110 +≥∈= −−−−− LkSuvgvgvgvgz bkLkLkkkk …… (3)

where Ljg j ,,0, …= represents the application of the algorithm as

implemented in block j, and where 0u is the initial time. If time indexes
in equation (3) are all equal to ,1−− Lk we have the classic “sequential
pipeline”. If indexes are different, we get a “hybrid1 pipeline”. The output
of a hybrid pipeline has a delay only equal to .bθ The initial value of a

hybrid pipeline algorithm is a matrix Ln × for .nv R∈

The generation of trigonometric functions, for example, can be
performed using

● a sequential pipeline algorithm:

() =+5sin kv

;!9
1

!7
1

!5
1

!3
1

!1
1 2222

 ⋅+−++−+⋅ kkkkk vvvvv

● a hybrid pipeline algorithm:

() =+1sin kv

.!9
1

!7
1

!5
1

!3
1

!1
1 2

5
2

4
2

3
2

2

 ⋅+−++−+⋅ −−−− kkkkk vvvvv

In this case, all pipeline segments, except the last, must perform similar
arithmetic operations. In [1], several examples are discussed of hybrid
pipeline algorithms. Note that in some cases, the pipeline may become
too long: in such cases, we must take a combination of methods of table
consulting and hybrid pipeline arithmetic [2].

1 The term hybrid is due to the fact that blocks do not only operate sequentially in
space but in parallel too, with respect to the input variable.

CRESCENZIO GALLO 138

The design of a compound algorithm often includes one or more
closed loops. Some stability studies [4, 6] show that in a parallel data
processor compound algorithms should be implemented in different time
sets …,2,1, =jSpj when true parallel algorithms are used. So some

input and output buffers are needed in arithmetic components in order to
transform these different time sets into the data transfer time set dS

().minwith pjd θ≤θ

True parallel algorithms' stability conditions do not only depend on
the mathematical properties of the topology of the spatial structure of
their arithmetic components operating in parallel, but also on the
stability intervals of such components. In a such way, the stability
interval of the linear open-loop hybrid pipeline can be evaluated:

,1with
1

2211 =αα++α+α= ∑
=

−−−

m

j
jmkmkkk vvvz "

making use of the transform analysis, and the results for the particular

case mj
1=α for mj ,,1 …= in <−m feedback gain .1<

If you use the internal feedback from the output of a hybrid pipeline
to the inputs of all blocks, you obtain a closed-loop hybrid pipeline
algorithm, described by:

(((,,,,,, 332221110 −−−−−−= kkkkkkk zvgzvgzvgz

()).,, 11 …… −−−− LkLkL zvg (4)

A particular case of the linearized version ∑ =
=

m
jkz 1

(),jkjjkj vz −− α+β the true parallel algorithm (named single step

algorithm) += −1kk zz ()11 −− −
θ
θ

kk
b zv shows a stability interval

<+
θ
θ− 12
b

 feedback gain .1< Thus a large stability interval requires

.bθ>>θ

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 139

Note that the single step algorithm is a discrete version of the

unconditionally stable time-continuous algorithm () () ().uvuzdu
udz =+θ

For ()uv constant both algorithms have the same equilibrium state.

A final consideration concerns the integration of ODEs. There are
several ways to perform the numerical integration of:

()
(() ()) [) () ,;,,, 000 yuyuuuuvuygdu

uyd
e =∈=

but almost all are unsuitable for parallel data processing. The application
of methods with local truncation errors of order higher than

()2::O ku∆ is unnecessary [4]. When the integration is achieved

through discrete-time integration algorithms continuous in ,bS the Euler

method (first order) is attractive. An important objection to this method
is that the magnitude of the step must be pretty low, which increases the
accumulation of rounding errors.

From Euler's numerical integration method (,11 −−
∆+= kkkk yguyy

)1−kv an attractive parallel algorithm can be derived. With the smallest

ku∆ equal to :bθ

,11 −−
θ+= kbkk wyy

()., 11 −−
= kkk vygw (5)

As arithmetic components of the parallel algorithm, we need a “linear
combination” delay algorithm of size two and a “function generating”
algorithm. The function is typically too complex to be implemented in ;bθ

quasi-time-continuous table consulting algorithms need to be applied [2].
The data transfer between arithmetic components requires that all data
are transferred in the same word length; then, it is necessary to round off
each output variable before the transfer. On the other hand, in true
parallel data processing, due to the reduced time step ,bθ we must take

CRESCENZIO GALLO 140

account of the term 1−θ kbw in such a way that the cumulative result is in

agreement with the required accuracy; so in the next processing cycle, a
rounding correction has to be introduced. With

,,, krklk yyy += (6)

where kly , is the rounding value of ky and kry , is the local rounding

error, the rounding correction applied to (5) results in:

,11,1 −−−
θ++= kbkrkk wyyy (7)

()., 11, −−
= kklk vygw

In a parallel data processor, all arithmetic components must be
equipped internally with such rounding procedure.

5. Conclusions

In this work, we analyze a possible parallel computing architecture
for the solution of ordinary differential equations, both in localized and
distributed environments, aiming to develop concepts for the construction
of a top layer of software for modeling and simulation (in its restricted
meaning of model execution).

We also present some experimental results with the aim of providing
the modeling process with better computing approaches. A series of
research hints are given, to further guide future research.

References

 [1] J. H. M. Andriessen, Discrete-time parallel algorithms with continuous-time
response, Proc. Simulation 80, Interlaken, Acta Press (1980).

 [2] L. Dekker, E. J. H. Kerckhoffs, G. C. Vansteenkiste and J. C. Zuidervaart, Outline of
a future parallel simulator, Proc. of the IMACS Congress on Simulation of Systems,
Sorrento, North Holland Publishing Co. (1979), 837-864.

 [3] P. M. Dickens, A workstation-based parallel direct-execution simulator, PADS’97
Proceedings of the eleventh workshop on Parallel and distributed simulation (1997).

PARALLEL ALGORITHMS FOR SOLVING ORDINARY … 141

 [4] European Simulation Meeting Algorithms in parallel data processing and
simulation, Delft, Holland (1979).

 [5] S. L. Ferenci, K. S. Perumalla and R. M. Fujimoto, An approach for federating
parallel simulators. PADS’00, Proceedings of the fourteenth workshop on Parallel
and distributed simulation, IEEE Computer Society (2000).

 [6] K. A. Frenkel, Special issue on parallelism, Communications of the ACM 29(12)
(1986).

 [7] L. Ince, Ordinary Differential Equations. Dover, New York (1956).

 [8] D. Nicol and P. Heidelberger, Parallel execution for serial simulators, Transactions
on Modeling and Computer Simulation (TOMACS) 6(3) (1996).

g

